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STABILITY WITH RESPECT TO A SPECIFIED NUMBER OF VARIABLES* 

V.I. VOROTNIKOV 

The stability with respect to a specified number of variables (specified 
quantitatively) is considered, the set of which changes depending on the 
initial conditions. The stability conditions of the form considered are 
derived using the Lyapunov-function method. The problem of the quenching 
of rotational motions with respect to the centre of mass of an asymptotic 
solid is examined; it is shown that the "twist" of a body with respect 
to one of the principal axes of its ellipsoid of inertia is possible using 
only one "fixed jet engines" for any large initial perturbations. 

1. Determination of stability with respect to a specified number of vari- 
ables. We will assume that the set of variables with respect to which the stability is 
examined is not specified in advance, and for any fairly small or even large initial pertur- 
bations itisonly necessary to guarantee the stability with respect to a specified number of 
variables (specified quantitatively). Whichofthe variables will turn out to be stable is not 
important, and it is assumed that different variables can be stable depending on the initial 
conditions (which necessarily encompass the whole fairly small or even fairly large domain of 
the initial perturbations). More exactly, we shall introduce the following definition. 

Definition 1. The unperturbed motion x = 0 of the n-dimensional system of perturbed 
motion 

x* = x (t, x) (X (t, 0) E O), x = (Irt . . .) i&J (1.1) 
is called stable with respect to a specified number of m<n variables, if the numbers 
s(s, to)> 0 and L>O are obtained for any e, to> O(L does not depend on s, to), such that the 
domain IIx,,11<8 is divided into L parts Dj, such that 

4 IJ Da U . . . UDL=IX~:IIX~II<~),~~D~~...~DL=(~} 

whilst from ~~~~~~(6 it follows that 

II y,+ 0; t,, X@) II c e (f 3 to1 fi = 1, * * ‘, L) 

if x,EL)*. Here ye+ = (Zj,, , . ., x,,J are different sets with respect to m variables from 
sl,...,* (i.e. they differ in at least two elements, but not in the order of their arrangement>. 
If, in addition, the following conditions hold: 

lim II Yj+ (t; b, XJ II = 0 6-t m) 

the motion x = 0 of system (1.1) is asymptotically stable with respect to the specified 
number of variables. 

Remark. lo. We assume that the right-hand sides of system (1.1) are continuous and 
satisfy the conditions of uniqueness of the solution'in the domain 

tl,*, llY;ll<~>*, *~llz;iI<+oo (W 
x;=(Y;,z;), Ilxll=llxfd i=l,...,L 

and any solution x(t) is defined for all r>O, for which I uj+ (t)//< H (j = i, . . . . L). 
2O. In the sense of the definition L72, or when L=i, Definition 1 becomesadefinition 

of y-stability in Rumyantsev's sense /I, 21, if D,=D, or becomes a definition of conditional 
y-stability fin Lyapunov's sense), if &#D. In this connection we emphasize that when 
L>2 the definition introduced is broader than the conditional stability with respect to 
part of the variables, for the whole fairly small domain of the initial perturbations is 
encompassed by Definition 1. 

30 . The number L can equal the maximum possible number of different sets yj+, although 
the latter is not necessary. 

4'. Definition 1 permits various modifications bearing in mind the different treatments 
of the concept of y-,stability /2/; in particular, we can refer to uniform or exponential 
stability with respect to a specified number, etc.. 

5'. We shall also distinguish the case when the unperturbed motion x=0 of system (1.1) 
is stable with respect to a specified number of variables in the whole domain P of variation 
of the parameters of the system, but the particular variables depend on the membership of the 
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parameters of the system in one or other part of the domain Q. We shall call this stability 
the parametric stability with respect to a specified number of variables. 

2. The use of the Lyapunov function method. We shall demonstrate one of the 
possibilities of using the Lyapunov function method to detect stability in the sense of 
Definition 1. 

Theorem 1. 
lo. 

Suppose W(x), W (O)EO is the first integral of system (1.1). 
If two functions V,(j = 1, 2) exist, such that in the domain 

(t> o~ilY;II~~>oO, o,<ll~j+II<+~~n{x:(-l)~w(x)<o} 

the following conditions hold: 

42.1) 

Vj 0, x) > =j (II yi II), Vi =G 0 (i = 1, 2) 

in which al(r) are continuous functions a,(r), q(O)= 0 that increase monotonically when 
~E[O,HI, the motion x =0 is stable with respect to a specified number of m variables; at 
the same time the domain of initial perturbations IIx,ll<d is divided into three parts: 
w (x0) > 0, W(x,) < 0, W(x,) = 0, in each of which the variables which consist of the vectors 

(Yl'), (YB+), (Y1+, YI+). 2" respectively are stable. 2'. If, in addition, the conditions VtJ.0 (j = 

i,2), hold, the stability with respect to the specified number of variables has an asymptotic 
form. (The condition ViJO indicates that V, approaches zero , monotonically decreasing.) 

Proof. Putting W*(x)= W(x)- W(x,), we conclude that when y,+ =x the functions 

VJ (tt x) when W*(x)= 0 satisfy the conditions of Lyapunov's theorem on conditional stability 
(/3, P.112/). Therefore the validity of Theorem 1 follows from Lyapunov's theorem and those 
of Rumyantsev /l, 2/ on stability with respect to some of the variables. 

Remark. The conditions V, 3 0 can be verified in the same way as in the well-known 
theorems on stability with respect to variables /2/; for example, the condition Vj 10 will 
hold if V, < b, (Iyj+ II), Vj' < -cl (IIy,+\b in the domain (2.1) , where bj,Cj are functions of the same 
form as aj. 

3. The problem of quenching rotational motions of a solid. Consider Euler's 
dynamic equations of a solid, secured at the centre of mass 

(3.1) 

where I! (i = 1, 2, 3) are the projections of the instantaneous angular velocity of the body on 
the principal axes of interia, A,B, C are the principal moments of inertia, and ~~(1, 2, 3) 
are the controlling moments. In particular, n1 can characterize the'tractive force of the 
three "fixed jet engines" arranged in appropriate form (see, e.g., /4/). 

Using Lyapunov's function method, it is shown in /5/ that: 1) the controls uI = a*~;(2 = 
1, 2), us3 0 (at = const< 0) guarantee stability in Lyapunov's sense and the asymptotic (zl, zJ- 
stability of the equilibrium configuration x1 = z, = x8 = 0 of the closed system (3.1) for 
any A, B,C; 2) the control 

u1 = alxl, uI s x8 E 0 (3.2) 
guarantees Lyapunov stability and asymptotic x1- stability of the equilibrium configuration 
21 = 2, = za = 0 of system (3.1), (3.2) for any A,B,C. Below we will examine the problem 
of the quenching of the angular rotations of a solid with respect to two of the three variables 
xi (i = 1, 2, 3) using only one universal variable (one "fixed jet engine of low power"). We 
assume that the solid is asymmetric, i.e. A #B#C. 

Theorem 2. If B<A<C (C<A<B), then for any small initial perturbations the 
equilibrium configuration x1 = xp = xa = 0 of system (3.1), (3.2) is Lyapunov-stable and 
asymptotically stable with respect to two of the three variables xi(i = 1, 2, 3). At the same 
time the domain of initial perturbations is divided into three mutually non-intersecting parts 

wo>o Wo<O), w,co (W,>O), w,=o (3.3) 

(w,=Sg A--B 
xd-_xJ) 

in which the variables (zr, za), (x1, xa), (x1, x,, xa) are asymptotically stable. 

Proof. We shall use the rules of /6/, which enable us to reduce the examination of 
stability with respect to some of the variables to an examination of stability in Lyapunov's 
sense for some subsidiary set of equations of C-form. For this we shall introduce the new 
variable p1 = (B - C)z&A, as a result of which system (3.1), (3.2) is transformed in the 
following way: 
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x 1’ = al*% + p1, p1’ = x,x (52, x3) 
. c-4 . 4-B 

52 = 7 Xl.%, x.7 = ~“1% a,*+- 

(3.4) 

x (x2, x3) = (B - C) IC (C - A) x32 + B (A - B) x,21 
(ABC)_’ = r (t) 

Consider the behaviour of the function r(t) along the trajectories of system (3.11, (3.2). 
Note that system (3.1), (3.2) allows of the first integral 

w= C--A 4 - B - x$,a - - 
B c 522 = Wo = const (3.5) 

We will first assume that W,# 0, and shall show that when the condition C<A (B or 

B<A<C holds along the trajectories of system (3.1), (3.2) we have the following in- 
equality: 

r (t)< -yyo = const< 0 (3.6) 

Assuming, on the contrary, that lim r(t)= O(t -too) or a finite instant of time t = t, 
exists, for which r (t*) = 0, and bearing in mind that X(x,, x3) is a negative-definite function 
for all x2, xgt we conclude that lim xi* (t) = 0 (t+ 00) (i = 2,3) or x2 (t*) = x3 (1,) = 0 and, 
consequently, in Eq.(3.5) lim W(t)= 0 (t-too) or W = 0 when t = t,,which is impossible. This 
means that inequality (3.6) holds for all t> t,. 

We can now write the first two Eqs.(3.4) in the following way (a system of p-form /6/): 

21' = ur*x1+ Pl, cL1' = I'(t)x, or in the form of the equation 

x1** + pxr* + q 0)x1 = 0 (P = - a,*, 9 (t) = - r (4 > vcl) (3.7) 

It is well-known (/7, p.238/ or /8, p.255/), that when the following condition holds: 

P > tiG - 1/E (P > 'I, sq - '/z Q./q, e > 0) (3.8) 

where IJ,, = coast> 0 is the upper limit of the function q(t) (i.e. ~~<q(t)<I’,,), the solution 
x1 = x1' = 0 of Eq.(3.7) is asymptotically stable in Lyapunov's sense. We shall verify the 
possibility of satisfying condition (3.8) in the above case. Note that in view of the non- 
asymptotic stability, in Lyapunov's sense, of the equilibrium configuration x1 = I, = 58 = 0 
of system (3.1), (3.2) the following estimate will hold in a fiarly small neighbourhood of the 
origin of coordinates: 

I/c--%<er 

"-%&~,~I= 

I( 
- - 115s + az8 B gp+G) (2X(r3,%3))-1 I<&) 

where E, is a fairly small number which is specified in advance. This means, for small initial 
perturbations (and for fairly small e,>O) inequality (3.8) holds for any fixed number p = 
-a,* > 0. 

The solution x1(t), x1'(t) of Eq. (3.7) are simultaneously also solutions x,(t), pr(t) of the 
initial system (3.1), (3.2); this indicates that the equilibrium configuration xl= xg = xs = 0 

of system (3.1), (3.2) has the following properties: 

1) s>o will be obtained for any E,, to> 0, such that from 1q01< 6, iX2&~ I<6 for 
all t>tO follows 

I x,0; to, Xo) 1 < 8, 1% (t; to, xo) xa (t; to, Xo) I < E w-9 

2) A &J > 0 will be obtained for each to > 0, such that when 1 xIo I < At I &xso j <A 

lim 1x1 (t) 1 = 0, lim 1 xI (t) x8 (t) ( = 0 (t + a) 
(3.10) 

We shall show that the following relations will follows from conditions (3.9), (3.10) : 

I .k (t) I < 8, lim I k (t) I = 0 (t--t m) 

where a= 2 or a=3 depending on the initial conditions. 
To determine the geometric limits of the convergence of the solutions of system (3.11, 

(3.2) we shall put 

xia 0) xILa (0 = f 0) (3.11) 

and, omitting the intermediate calculations, we obtain the following solutions from Eqs.(3.5), 
(3.11): 

xsa (t) = BWo -+ [ ,(,“‘_“;)% + 
(A - 4 W(t) 

Z(C-.4) C(C-A) 
-1”. (3.12) 

(C - 4) Cf (t) ‘/I 
BV---B) I 
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(we discard solutions with a minus sign in front of the radical). 
We can now verify that when B<A <C(C<A <B) for Wo<O the relation 5aa (t) -+ 0 

($2(t)-+. 0) holds, and when W,>O the relation z9' (t)+ 0 (srra (t)+O) holds. This means 
that when W,#O the statement of Theorem 2 is proved. 

We shall separately examine the case when W,= 0, when a finite instant of time t = t* 
is possible, such that r(t,)= 0; the asymptotic relation limr(t) = 0 gt+ m) indicates the 
Lyapunov asymptotic stability of the equilibrium configuration 9 = 5, = zc* = 0 of system (3.11, 
(3.2). Since the condition r (t*)= 0 is equivalent to the conditions z~(z*)= z8 f&f= 0 and, 
in addition, system (3.11, (3.2) has the solution x1 = z1 (t;t,,x,),x,= x9= 0, conditions 
‘21 (t*) # 8, xa(t*) E ss (t*) 3 8 will determine the solution s1 = z* (t; t,, 51 (t*)), x2 it) = x8 (t) = 0 
for all t > t,. Ey virtue of the feasibility for system (3.11, (3.2) of the conditions of /9/, 
which guarantee the uniqueness of the solutions, this solution will be unique for the above 
initial conditions. The equilibrium configuration z1 = xa = zI) = 0 of system (3.1), (3.2) is 
(non-asymptotically) Lyapunov-stable,and the function x1 (t; t,, x1 (t,)) satisfies the differential 
equation zl' = ul*zl (al* = const < 0) when t > t, ; therefore the asymptotic stability, in 
Lyapunov's sense, of the equilibrium configuration r1 = z8 =x8 = 0 of system (3.1), (3.2), 
follows from the conditions w, = 0, I?@,) = 0. When W, = 0, r(t) < - rO= const<O a 
similar property of the equilibrium configuration of system (3.1), (3.2) follows from Eq.(3.12). 
The theorem is proved. 

Remark. The condition V 10 (/8, p.255/) holds for Lyapunov's function 

along the trajectories of Eq.(3.7) , and consequently also along the trajectories of system 
(3.1), (3.2). Bearing in mind that the integral (3.5) also occurs for Eqs.(3.1), (3.2), 
instead of the function V we can consider the two functions: 

We can verify that in the domain 

(t&o, ilr;il-Sa, uzfn<+-inwt-d<ot 
Y; = h,?), Y,' = f~d,~d, j-i,2 

the functions ~~o=i,Z), I satisfy all the conditions of Theorem 1. 
We shall show that, choosing the quantity [al 1 in (3.2) to be fairly large, we can 

achieve the satisfaction of 
of the initial conditions. 

the conditions of Theorem 2 for any previously specified domain 

Theorem 3. If B<A (C (C< A <B), the equilibrium configuration z1 =x,=x5 = 0 of 
system (3.11, (3.2) is also asymptotically Lyapunov stable with respect to two of the three 
variables zl(i = 1, 2, 3) in the domain 

AS the same time the domain (3.13) is divided into three mutually non-intersecting parts 
(3.3) , in which the variables (zX, ta), (zl, ~a), (zl, .r,, x3) respectively are asymptotically stable. 

Proof. It is well-known (/7, p,238/), that if for all t,xi(i = 1, 2, 3)the following 
inequality holds: 

(3.14) 

then the solution x1=x1'= 0 of Eq.(3.7) is asymptotically stable with respect to both 
variables for any initial perturbations. We shall express inequality (3.14) in terms of the 
initial conditions z,a(i = 1, 2, 3). For this we note that the function R = AxlgfBxS’f Cx,’ 
satisfies the equation R'= 2al*Aq S by virtue of system (3.1), (3,2), and consequently is 
non-increasing for all t> 2,. This means that for all t> t,, 

R<&l (3.15) 
In addition, the following estimate holds for the function r(t) 

-r(t)=(C--B) [C(C-A)x~a(t)+B(A-~)xa~(t)~ (3.16) 
(ABC)-’ < 1 (Cxf + Bx:) < ER 
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From (3.15), (3.16) we conclude that -r(t)< IR,, and, consequently, r0 = LR,. 

Since the inequality (3.14) will hold if - a,* > IQ- ,,, then when the initial perturbations 

ziO (i = 1, 2, 3) in system (3.11, (3.2) satisfy the condition -a,> I/IR,, the solution 2,:: 
I ; = 0 of Eq.(3.7) is asymptotically stable with respect to x1, x1', and consequently the 
equilibrium configuration x1 = z2 = xQ = 0 of system (3.1), (3.2) is asymptotically stable 
with respect to ml, (B - C) x,x,/A. Further proof is carried out using the same scheme as that 
of Theorem 2. 

Theorem 4. Suppose the solutions of system (3.1), (3.2), which begin in the fairly small 
neighbourhood of the point x1 = x2 = 58 = 0, are bounded for fairly small perturbing moments 
Mi(i = 1, 2, 3) with respect to the principal axes of inertia of the body. If B<A<C(C< 
A(B), then for any small initial perturbations the equilibrium configuration 51 = x, = 
xQ = 0 of the closed system (3.1), (3.2) is stable in Lyapunov's sense and stable with respect 
to two of the three variables xi(i = 1, 2, 3) for constantly active small perturbing moments 
Mi(i=i, 2, 3). At the same time the domain of the initial perturbations is divided into 
three mutually non-intersecting parts (3.3), in which the variables (51, x,), (Xl? &)r (Xl? x21 XQ) 
respectively are stable. 

Proof. In the case Mi# 0 (i = 1, 2, 3), after introducing the new variable CL~ = (B - 
C) xpzJA Eqs.(3.1), (3.2) are transformed in the following way: 

x1' = %*x1 + p1 + M,I 

(AI'= r(t)xr + A, A = y(xs;ns + x~Ma) 

On the assumption made about the boundedness of the solutions for all t> t,,. we have 

IAl<& where 6 is a fairly small number, if M,,M, are fairly small. Since the asymptotic 
stability of the solution xi = zr'= Oq of Eq.(3.7) is established in /7/ using a Lyapunov 
function that is not time-dependent and whose derivative is negative-definite, the solution 
xi = Zr' = 0 of Eq.(3.7) is stable with constantly acting perturbations on the basis of 
Maklin's theorem /lo/. This means that for fairly small perturbing moments M,(i = 1, 2, 3) 
the equilibrium configuration x1=x2 = xQ = 0 of system (3.1), (3.2) is stable with respect 
to xl, (B - C) x,x,lA. Using the procedure for proving Theorem 2, we conclude that the inequality 

Iz,l<s or 1x3 I<E follows from the condition (B - C)*XZ”X,’ I Aa < E , depending on the 
sign of W,. 

4. Practical application of the results obtained. lo. The conditions of 
Theorem 3 guarantee a "twist" of the body with respect to the larger or smaller (depending 
on the value of the initial perturbations) axis of its ellipsoid of inertia for any initial 
perturbations. At the same time the angular velocity 3 with which the body rotates after 
the twist is determined by the equation 

OS= W,IE (4.1) 
where S=(C- A)/B or E=(B-A)/C depending on the axis around which the twist occurs. As 
follows from (4.1), the angular velocity 3 does not depend on z~,,- the projection of the 
initial angular velocity of the body on the axis, with respect to which it gives the "fixed 
jet engine" moment, and decreases in comparison with the initial value zcra (a=2 or a=3) to 
a value & = C(C - A) ztO*/[(B - A)B] (u= 2) or E,= B (A -B) zpgV[(C - A)Cl (a= 3). Therefore whether or 
not the angular velocity of the body after a twist attains a value dictated by the initial 
technical requirement depends on the quantities z~,,, E, and +,,E,. The twist of the body is 
of interest in a number of problems of space-flight apparatus control /ll/, and also at the 
intermediate stage of the active control of the rotational motion of a solid, for, after the 
twist occurs, we can construct control laws /12, 13/ that turn the body at a specified angle 
and stop its rotation completely. 

2O. It is known /14, 15/ that the preliminary twistoof the satellite around the major 
axis of the ellipsoid of inertia is used for passive stabilization of satellites. Since the 
angular motion of a satellite is described by Eqs.(3.1) (/8, p.256/) when the natural angular 
velocity of a satellite significantly exceeds its angular velocity of revolution round the 
orbit, then in the case of a fairly large value of (4.1) we can effect the satellite twist 
using all or only one fixed jet engine. 

30 , - The situation called in Par.1 parametric stability with respect to a specified number 
of variables arises, for example, when examining the stability of Lotki-Volterra systems (/3, 
p.207/). The concept introduced can be used to formulate accurately the Lotki-Volterra 
ecological principle of extinction. 

REFERENCES 

1. RUMYANTSEV V.V., The,stability of motion with respect to some variables. Vestn. MGU. Ser. 
Matematika, Mekhaniki, Astronomii, Fiziki, Khimii, 4, 1957. 



271 

2. OZIRANER A.S. and RUMYANTSEV V.V., Lyapunov's function method in the problem of the 
stability of motion with respect to some of the variables. PMM, 36, 2, 1972. 

3. RUCHE N., ABETS P. and LALOIS M., Lyapunov's direct method in the theory of stability. 
Moscow, Mir, 1980. 

4. AMANS M. and FALB P., Optimal control. Moscow, Mashinostroenie, 1968. 
5. FURASOV V.D., Stability of motion, estimates and stabilization. Moscow, Nauka, 1977. 
6. VOROTNIKOV V.I., Stability of motion with respect to some of the variables for some non- 

linear system. PMM, 43, 3, 1979. 
7. MERKIN D.R., Introduction to the theory of automatic control and its application. Moscow, 

Nauka, 1976. 
8. SYU D. and MEIER A., Current theory of automatic control and its application. Moscow, 

Mashinostroenie, 1972. 
9. PONTRYAGIN L.S., Ordinary differential equations. Moscow, Nauka, 1970. 
10. MALKIN I.G., Theory of stability of motion. Moscow, Nauka, 1966. 
11. RAUSHENBAKI~B.V. andTOKARE.N.,Orientation control of space craft. Moscow, Nauka, 1974. 
12. ZUBOV V.I., The problem of the stability of control processes. Leningrad, Sudostroenie, 

1980, 
13. CH~RNOUS'KOF.L., AKULENK0D.D. andSOKOLOVB.N.,Oscillation~ control. Moscow, Nauka, 1965. 
14. BELETSKII V-V., Motion of an artificial satellite with respect to the centre of mass. 

Moscow, Nauka, 1965. 
15. GRODZOVSKII V.L., OKHOTSIMSKII D.E. et al., The mechanics of space flight. In: Mechanics 

the USSR over the last 50 years. MOSCOW, Nauka, 1, 1968. 

Translated by H.Z. 

PWM U.S.S.R.,vol.SO,No.3,pp.271-278,1986 0021-8928/86 $1o.OO+o.oo 
Printed in Great Britain 0 1987 Pergamon Journals Ltd. 

ON EVOLUTIONARY NOTIONS OF A PARTICLE IN A INVITATIONAL FIELD* 

A.D. MOROZOV 

Non-conservative, time-periodic perturbations of the Kepler problem are 
studied. A phase-averaged system is given , which determines the evolution 
in the system when there are no resonance modes. The qualitative bchaviour 
of the solutions in the resonance zones is studied. Depending on the 
structure of the behaviour of the solutions, the resonances are divided 
into traversable, partially traversable and non-traversable. The 
boundedness ofthesetofpartiallytraversable resonances is established, 
.and this, in many cases, makes it possible to determine evolution in a 
system with resonance modes. An example is used to illustrate the method. 
It is shown that a constant component in the periodic function of the 
perturbation causes the evolutionary process to become non-unidirectional. 

1. Formulation of the problem. Consider the motion of a "particle" in a gravity 
field in a medium whose resistances R depend periodically on time. If r, cp are polar coordinates 
in the orbital plane, then the normal and tangential component of the resistance force is equal 
to -mRr’/v, -mRq’rfv respectively. Here m is the mass of the particle, R is the resistance 
per unit mass of the particle and v is the orbital velocity /I/. We write R = &g(r,v, &)where 
s isasmallpositivePar~eter,thefunctiongisatleastcontinuousintandperiodicin Qt with 
period 2n, Q is the perturbation frequency. We also assume that g is analytic in r and " (r) 
in the region r>r_> 0. The equations of motion of the particle can be written in the form 

r" - aW + Mlr’ = - egr’iv, a’ = - eaglv (1.0 
where o, = rav’ is the kinetic moment of the particle, M= G(m,+ m), m, is the mass of the 
central body and G is the gravitational constant. 

A characteristic feature of system (1.1) is the resonances, i.e. the integer-type 
relations connecting the perturbation frequency D with the characteristic frequency (with mean 
angular motion w): 

po=qQ (1.X) 
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